| (Effective | from the academic year
SEMESTER – V | ar 2018 -2019) | | | | |--|--|--|---------|----|--| | Subject Code | 18AI55 | CIE Marks | 40 | | | | Number of Contact Hours/Week | 3:0:0 | SEE Marks | 60 | | | | Total Number of Contact Hours | 40 | Exam Hours | 3 Hrs | S | | | | CREDITS - 03 | | | | | | 1. Gain a historical perspective of AI and 2. Become familiar with basic principles 3. Get to know approaches of inference, | s of AI toward probler | | | | | | Module – 1 Introduction to AI: history, Intelligent syst | tems, foundation and su | b area of AI, applications, curren | | 0 | | | and development of AT Problem solving: s
Chapter 1 and 2
RBT: L1, L2
Module – 2 | tate space search and co | ontrol strategies | | | | | Problem reduction and Game playing: Palpha-beta pruning, Two player perfect infor Chapter 3 RBT: L1, L2 | Problem reduction, game
rmation games | e playing, Bounded look-ahead str | rategy, | 0 | | | Logic concepts and logic Programming: system, semantic tableau system, resolution: Chapter 4 RBT: L1, L2 Module – 4 | refutation, predicate log | gic, Logic programming. | | - | | | Advanced problem solving paradigm: Planased planning, Linear planning using a good carrier plans Chapter 6. RBT: L1, L2 | anning: types of plann
al stack, Means-ends an | nalysis, Non linear planning strat | tegies, | 08 | | | Module – 5 | | | | | | | Anowledge Representation, Expert system approaches to knowledge representation, kernantic networks for KR, Knowledge representation phases, architectural representation and 8 (8.1 to 8.4) | mowledge representation sentation using Frames. | al system | | 08 | | | DO 11 14 | | | | | | | BT: L1, L2 | | | | | | | ourse outcomes: The students should be ab | | | | | | | BT: L1, L2 ourse outcomes: The students should be ab Apply the knowledge of Artificial Int Apply the AI knowledge to solve pro Develop knowledge base sentences us Apply historical logic to solve knowledge | relligence to write simple
blem on search algorith
sing propositional logic | nm.
e and first order logic. | | | | | Ourse outcomes: The students should be ab Apply the knowledge of Artificial Int Apply the AI knowledge to solve pro Develop knowledge base sentences us | relligence to write simple
blem on search algorith
sing propositional logic | nm.
e and first order logic. | | | | | Apply the knowledge of Artificial Int Apply the AI knowledge to solve pro Develop knowledge base sentences us Apply historical logic to solve knowledge to solve knowledge base sentences us The question paper will have ten will | relligence to write simple blem on search algorith sing propositional logic reage engineering processions. | nm.
e and first order logic. | | _ | | | Apply the knowledge of Artificial Int Apply the AI knowledge to solve pro Develop knowledge base sentences us Apply his order logic to solve knowledge restion Paper Pattern: The question paper will have ten question full Question consisting of 20 m | relligence to write simple blem on search algorith sing propositional logic reage engineering procestions. | nm.
e and first order logic. | | | | | Apply the knowledge of Artificial Int Apply the AI knowledge to solve pro Develop knowledge base sentences us Apply this order logic to solve knowledge Estion Paper Pattern: The question paper will have ten question | telligence to write simple blem on search algorith sing propositional logic reage engineering processions. Stions. Stions arks maximum of four sub quarters | am. c and first order logic. css. questions) from each module. | | | | Each full question will have sub questions covering all the topics under a module. The smooths will have to suswer a tim docations' selecting one tim docation from each module. DRT. II I 7 T 1 ## Course Outcomes: The student will be able to: - Acquire fundamental understanding of the core concepts in automata theory and Theory of Computation - Learn how to translate between different models of Computation (e.g., Deterministic and Non-deterministic and Software models). - Design Grammars and Automata (recognizers) for different language classes and become knowledgeable about restricted models of Computation (Regular, Context Free) and their - Develop skills in formal reasoning and reduction of a problem to a formal model, with an emphasis on semantic precision and conciseness. - Classify a problem with respect to different models of Computation. ## Question Paper Pattern: - The question paper will have ten questions. - Each full Question consisting of 20 marks - There will be 2 full questions (with a maximum of four sub questions) from each module. - Each fuil question will have sub questions covering all the topics under a module. - The students will have to answer 5 full questions, selecting one full question from each module. ## Textbooks: - Edition, and Complexity, Computability 1. Elaine Rich, Automata, education,2012/2013 - 2. K L P Mishra, N Chandrasekaran, 3rd Edition, Theory of Computer Science, PhI, 2012. - 1. John E Hopcroft, Rajeev Motwani, Jeffery D Ullman, Introduction to AutomataTheory, Languages, and Computation, 3rd Edition, Pearson Education, 2013 - 2. Michael Sipser: Introduction to the Theory of Computation, 3rd edition, Cengage learning,2013 - 3. John C Martin, Introduction to Languages and The Theory of Computation, 3rd Edition, Tata McGraw -Hill Publishing Company Limited, 2013 - 4. Peter Linz, "An Introduction to Formal Languages and Automata", 3rd Edition, Marnes Dublishers 1008 - 5. Basavaraj S. Anami, Karibasappa K G, Formal Languages and Automata theory, Wiley India, - 6. C K Nagpal, Formal Languages and Automata Theory, Oxford University press, 2012. Faculty can utilize open source tools (like JFLAP) to make teaching and learning more interactive. > he Bepartment Dept. of Artificial Intelligence & Machine Learning Alva's Institute of Engineering and Technology Shobhavanu Campus, Mijar Moodubidire 574 225, D.K. Kamataka, India