IV Semester

MICROCONTROLLER AND EMBEDDED SYSTEMS				
Course Code	21CS43	CIE Marks	50	
Teaching Hours/Week (L:T:P: S)	3:0:2:0	SEE Marks	50	
Total Hours of Pedagogy	40 T + 20 P	Total Marks	100	
Credits	04	Exam Hours	03	

- CLO 1: Understand the fundamentals of ARM-based systems, including programming modules with registers and the CPSR.
- CLO 2: Use the various instructions to program the ARM controller.
- CLO 3: Program various embedded components using the embedded C program.
- CLO 4: Identify various components, their purpose, and their application to the embedded system's applicability.
- CLO 5: Understand the embedded system's real-time operating system and its application in IoT Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. The lecturer method (L) does not mean only the traditional lecture method, but different types of teaching methods may be adopted to develop the outcomes.
- 2. Show video/animation films to explain the functioning of various concepts.
- э. сперигаде сонавогацие (Втопрнеагинд) теагинд игсие стаха.
- Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop thinking skills such as the ability to evaluate, generalize, and analyze information rather than simply recall it
- 6. Topics will be introduced in multiple representations.
 - their own creative ways to solve them.
- Discuss how every concept can be applied to the real world, and when that's possible, it helps improve the students' understanding.

Module-1

Microprocessors versus Microcontrollers, ARM Embedded Systems: The RISC design philosophy, The ARM Design Philosophy, Embedded System Hardware, Embedded System Software.

ARM Processor Fundamentals: Registers, Current Program Status Register, Pipeline, Exceptions, Interrupts, and the Vector Table, Core Extensions

Textbook 1: Chapter 1 - 1.1 to 1.4, Chapter 2 - 2.1 to 2.5

Laboratory Component:

1. Using Keil software, observe the various registers, dump, CPSR, with a simple ALP programme.

Teaching-Learning Process	1. Demonstration of registers, memory access, and CPSR in a
	programme module.
	2. For concepts, numerical, and discussion, use chalk and a
	whiteboard, as well as a PowerPoint presentation.
	Module-2

Introduction to the ARM Instruction Set: Data Processing Instructions , Branch Instructions, Software Interrupt Instructions, Program Status Register Instructions, Coprocessor Instructions, Loading Constants

e compilers and openinkation abase o bata Types, o hooping of uctures, register miocation, runction

as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (duration 03 hours)

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module Marks scored shall be proportionally reduced to 50 marks

Suggested Learning Resources:

Textbooks

- 1. Introduction to the Design and Analysis of Algorithms, Anany Levitin: 2nd Edition, 2009. Pearson.
- 2. Computer Algorithms/C++, Ellis Horowitz, SatrajSahni and Rajasekaran, 2nd Edition, 2014, Universities Press.

Reference Books

- Introduction to Aigorithms, Thomas H. Cormen, Charles E. Leiserson, Ronai L. Rivest, Clifford Stein, 3rd Edition, PHI.
- 2. Design and Analysis of Algorithms, S. Sridhar, Oxford (Higher Education)

Weblinks and Video Lectures (e-Resources):

- 1. http://elearning.vtu.ac.in/econtent/courses/video/CSE/06CS43.html
- https://pptalacip/courses/106/101/106101060/
- http://elearning.vtu.ac.in/econtent/courses/video/FEP/ADA.html
- 4. http://cse01-iiith.vlabs.ac.in/
- $5. \quad http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=IntroToAlgorithms$

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- 1. Real world problem solving and puzzles using group discussion. E.g., Fake coin identification, Peasant wolf goat cabbage nuzzle Konigsberg bridge nuzzle etc.
- 2. Demonstration of solution to a problem through programming.

Head of the Department

Dept. of Artificial Intelligence & Machine Learning

Alva's Institute of Engineering and Technology

Shobhavana Campus, Mijar

Moodubidire 574 225, D.K. Karnataka, India