(Effective	VIICS FOR MACHINI from the academic year SEMESTER – V		
Subject Code	18AI56	CIE Marks	40
Number of Contact Hours/Week	3:0:0	SEE Marks	60
Total Number of Contact Hours	40	Exam Hours	3 Hrs
	CREDITS - 03		

Course Learning Objectives: This course will enable students to:

- Improve the skills and knowledge in linear algebra to get more out of machine learning.
- Understand the vector calculus required to build many common machine learning techniques.
- Learn the probability and distribution in statistics to build machine learning applications.
- Learn the basic theoretical properties of optimization problems, for applications in machine learning

Learn the basic theoretical properties of optimization problems, for applications in machine learning	5
Module – 1	CH
Linear Algebra-Part1: Introduction, Matrices, System of Linear Equations, Vector Spaces, Linear	08
Dependence and independence, Gaussian Emilination, Dasis and Dasis set, Kank, (volus , mile) ribudicis,	!
Lengths and Distances, Angles (Ch: 2-2.6, Ch:3-3.3)	
RBT: L1, L2	
Module – 2	
Linear Algebra-Part2: Orthogonality, Orthonormal Basis, Orthogonal Complement, Rotations,	08
Determinant and Trace, Eigenvalues and Eigenvectors – its interpretations, Projections, Regression,	
Diagonalization, Singular Value Decomposition(Ch:3.4-3.6, 3.9, Ch:4-4.5)	
RBT: L1, L2	
Module – 3	
Vector Calculus: Introduction, Differentiation of Univariate Functions, Partial Differentiation and	08
Gradients, Gradients of Vector-Valued Functions, Gradients of Matrices, Useful Identities for Computing	
Gradients, Backpropagation	
(Ch-5)	
RBT: L1, L2	
Module – 4	
P. L. Litte, I Ph. et al., P. L. Litte,	Oθ
and Continuous Random Variables and Distributions, Expectation and its Interpretations, Standard	
discrete and continuous distribution functions, Central Limit theorem (Ch-6)	
RBT: L1, L2	
Module – 5	

RBT: L1, L2

- Improve the skills and knowledge in linear algebra to get more out of machine learning.
- Understand the vector calculus required to build many common machine learning techniques.

Optimization:Introduction, Optimization Using Gradient Descent, Constrained Optimization and

08

- Learn the probability and distribution in statistics to build machine learning applications.
- Learn the basic theoretical properties of optimization problems, for applications in machine learning

Question Paper Pattern:

- The question paper will have ten questions.
- Each full Question consisting of 20 marks
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

 Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong. "Mathematics for Machine Learning", Published by Cambridge University Press, Copyright 2020

MULLIUM DUUNS.

Touthooker

1. Saroj Kaushik, Artificial Intelligence, Cengage learning, 2014

Reference Books:

- 1. Elaine Rich, Kevin Knight, Artificial Intelligence, Tata McGraw Hill
- 2. Nils J. Nilsson, Principles of Artificial Intelligence, Elsevier, 1980
- 3. StaurtRussel, Peter Norvig, Artificial Intelligence: A Modern Approach, Pearson Education, 3rd Edition, 2009
- George F Lugar, Artificial Intelligence Structure and strategies for complex. Pearson Education, 5th Edition, 2011

Dept. of Artificial Intolligence & Machine Learning
Alva's Institute of Engineering and Technology
Shobhayana Campus, Mijar
Moodubidire 574 225, D.K. Karnataka, India