
IV Semester

Course Code

Teaching Hours/Week (L:T:P: S)
Total liours of Pedagogv
Credits

Course Learning 0bjectives:

DESIGN AND ANALYSIS OF ALGORITHMS

21CS42 CIE Marks

3:0:2:0
40T+ 20P

Teaching-Learning Process (General Instructions)

3

04

4

5

6

CLO 1. Explain the methods of analysing the algorithms and to analyze performance of algorithms.
CLO 2. State algorithm's efficiencies using asymptotic notations.

SEE Marks

CLO 3. Solve problems using algorithm design methods such as the brute force method, greedy method,

8

I Total Marks

2. Show Video/animation films to explain functioning of various concepts.

Exam Hours

CLO 4. Choose the appropriate data structure and algorithm design method for a specified application.
CLO 5. Introduce P and NP classes.

These are sample Strategies, which teachers can use to accelerate the attainment of the various course
outcomes.

1. Lecturc mcthod {L) doos not mcan oaly traditiona! lecturc method, but different type of

teaching methods may be adopted to deveiop the outcomes.

50

divide and conquer, decrease and conquer, transform and conquer, dynamic progranmming,

50

Encourage collaborative (Group Learning) Learning in the class.

100

03

Topics will be introduced in a multiple representation.

03.09.2022

Module-1

Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical
thinking.

Laboratory Component:

Adopt Problem Based Learning (PBLJ, which fosters students' Analytical skills, develop thinking
skiis such as the ability to evaiuate, generalize, and analyze informaion rather than simply recall

7. Show the different ways to solve the same problem and encourage the students to come up with
their own creative ways to solve them.

TextboGk 2: Chapter ifsection 1.1.1.2.1.3)

Discuss how every concept can be applied to the real world- and when that's possible, it helps
improve the students' understanding.

Introduction: What is an Algorithm? It's Properties. Algorithm Specification-using natural language,
using Pseudo code convention, Fundamentals of Algorithmic Problem solving, Analysis Framework-Time
efficiency and space efficiency, Worst-case, Best-case and Average case efficiency.

Performance Analysis: Estimating Space complexity and Time complexity of algorithms.
Asymptotic Notaticns: Big-Oh notation (0), Omcga notation (2), Thcta notation () with cxamplcs, Basic

Brute force design technique: Selection sort, sequential search, string matching algorithm with
complexity Analysis.

.

Textbook 1: Chapter 1 (Sections 1.1,1.2), Chapter 2(Sections 2.1,2.2,2.3,2.4), Chapter 3(Section 3.1,3.2)

1. Sort a given sct of n integer clen:ents using Sclection Sort nethed and computc its timc
complexity. Run the program for varied values of n> 5000 and record the time taken to sort. Plot
a graph of the time taken versus n. The elements can be read from a file or can be generated using
the random number generator. Demonstrate using C++/]ava how the brute force method works
along with its time complexity analysis: worst case, average case and best case.

Teaching-Learning Process

Sorting. lt's eiciency analysis.

1

Divide and Conquer: General method, Recurrence equation for divide and conquer, solving it using
Master's theorem. , Divide and Conquer algorithms and complexity Analysis of Finding the maximum &
minimum, Binary search, Merge sort, Quick sort.

Laboratory Component:

3. Laburalury Denonsraiun.
Module-2

Textbook 2: Chapter 3(Sections 3.1,3.3,3.4,3.5,3.6)

Problem based Learning.

Textbook 1: Chapter 4 (Sections 4.1,4.2,4.3), Chapter 5(Section 5.1,5.2,5.3)

Teaching-Learning Process

complexity. Run the program for varied values of n> 5000 and record the time taken to sort. Plot
a graph of the time taken versus n. The elements can be read from a file or can be generated using
the random number generator. Demonstrate using C++/Java how the divide-and-conquer
method works along with its time complexity analysis: worst case, average case and best case.

2. Sort a given set of n integer elements using Merge Sort method and compute its time

a graph of the timc takcn versus n. The clcncnts can be rcad from a filc or can be gencrated using
the random number generator. Demonstrate using C++/Java how the divide-and-conquer
method works along with its time complexity analysis: worst case, average case and best case.

1

2. Laboratory Demonstration.

Chalk & board, Active Learning, M00c, Problem based
Learning

03.09.2022

Module-3

Greedy Method: General method, Coin Change Problem, Knapsack Problem, solving Job sequencing with
deadlines Problems.

Minimum cost spanning trees: Prim's Algorithm, Kruskal's Algorithm with performance analysis.
Single source shortest paths: Dijkstra's Algorithm.

Textbook 2: Chapter 4(Sections 4.1,4.3,4.5)

Optimal Iree prnhiem: Hnffman Irees and Codes.

Transform and Conquer Approach: Introduction, Heaps and Heap Sort.

Textbook 1: Chapter 9(Section 9.1,9.2,9.3,9.4), Chapter 6(section 6.4)

Lahorotorv Comnonent:

Write & Execute C++/Java Program

1. To solve Knapsackproblem using Greedy nmethod.
2. To find shortest paths to other vertices from a given vertex in a weighted connected graph, using

Dijkstra's algorithm.
To fid Mininnnnn Cost Snäitins Tree of à oiveù toiiieied ndireied sranh isins Kiuskal's

algorithm. Use Union-Find algorithms in your program.
4. To find Minimum Cost Spanning Tree of a given connected undirected graph using Prim's

algorithm.
Teaching-Learning Process

Dynamic Programming: General method with Examples, Multistage Graphs.

1. Chalk & board, Active Learning, MOOC, Problem based
Learning.

Transitive Closure: Warshall's Algorithm. All Pairs Shortest Paths: Floyd's Algorithm,

2. Laboratory Demonstration.

Knapsackproblem, Bellman-Ford Algorithm, Travelling Sales Person problem.

Space-Time Tradeoffs: Introduction, Sorting by Counting. Input Enhancement in String Matching
Harspoo!'s aBzorithm.

Laboratory Component:

Module.4

Textbook 2: Chapter 5 (Sections 5.1,5.2,5.4,5.9)

Write C++/ Java programs to

Textbook 1: Chapter 8(Sections 8.2,8.4), Chapter 7 (Sections 7.1,7.2)

Teaching-Learning Process

2. Solve Travelling Sales Person problem using Dynamic programming.
3. Solve 0/1 Knapsack problem using Dynamic Programming method.

1. Chalk & board, Active Learning, M00C, Problem based
Learning.

2

Laboratory Component:

Laboratory Demonstration.

Motile-5

Backtracking: General method, solution using back tracking to N-Queens problenm, Sum of subsets
problem, Graph coloring Hamiltonian cycles Problems.

Branch and Bound: Assignment Problem, Travelling Sales Person problem, 0/1 Knapsack problem

NP-Complete and NP-Hard problems: Basic concepts, non- deterministic algorithms, P, NP, NP
Complete, and NP-llard classes.

Textbook 1: Chapter 12 (Sections 12.1,12.2) Chapter 11(11.3)

Textbook 2: Chapter 7 (Sections 7.1,7.2,7.3,7.4,7.5) Chapter 11 (Section 11.1)

1. Design and implement C++/|ava Program to find a subset of a given set S = {SI, S2,., Sn} of n
DOSitive integers whose SÜM is equai to a given positive integer d. For exampie. if S = (1. 2.5.6. 3}

problem instance doesn't have a solution.

2. Design and impiement C++/java Program to inú aii Hamiitonian Cycies in a connected
undirected Graph G ofn vertices using backtracking principle.

Teaching-Learning Process

Course outcome (Course Skill Set)

At the end ot the course the student will he able to:

1.

cO 1. Analyze the performance of the algorithms, state the efficiency using asymptotic notations and
analyze mathematically the complexity of the algorithm.

CO 2. Apply divide and conquer approaches and decrease and conquer approaches in solving the
problems analyze the same

Assessment Details (both CIE and SEE)

Chalk & board, Active Learning, MOOC, Problem based
learning.

2. Laboratory Demonstration.

cO 3. Apply the appropriate algorithmic design technique like greedy method, transform and conquer

Co 4. Áppiy ani aiaiyze çy1natic prog1amning apprvaches iw soive souë probieis. and inpiövë än
algorithm time efficiency by sacrificing space.

CO 5. Apply and analyze backtracking, branch and bound methods and to describe P, NP and NP
Complete problems.

Continuous Internal Evaluation:

1

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%.
!ne minimum pass!ng mars ror Tne LIE 1s 4UY 0I The naxmum marks {Z0 marKS}. A STInenT Sna! De

03.09.2022

deemed to have satisfied the academic requirements and earned the credits allotted to each subject/
course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination
(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal
Evaluation) and SEE (Semester End Examination) taken together

3

First test at the end of 5th week of the semester
2 Second test at the end of the 10th week of the semester

Two assignments each of 10 MarkS

Third test at the end of the 15th week of the semester

Firct aceirnment at the end rf Ath eak afthe camactar

Second assianment at the end of ytn weelk of the semester

Practical Sessions need to be assessed by appropriate rubrics and viva-voce method. This will contribute
to 20 marks.

Rubrics for each Experiment taken average for all Lab components - 15 Marks.

The sum of three tests, two assignments, and practical sessions will be out of 100 marks and will be
scaled down to 50 marks

(to have a less stressed CIE, the portion of the syllabus should not be common /repeated for any of the
methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

