[As per Ch	oice Based Credit	ND APPLICATIONS System (CBCS) schem mic year 2017 -2018) R - III	e]		
Subject Code	17CS33	IA Marks	40	40	
Number of Lecture Hours/Week	04	Exam Marks	60		
Total Number of Lecture Hours	50	Exam Hours	03	03	
	CREDIT	S - 04			
Module -1				Teachin Hours	
Operations, Review of Arrays, Structu Dynamic Memory Allocation Funct Dynamically allocated arrays, Array of sorting. Multidimensional Arrays, Poly Storing, Operations and Pattern Matchin Text 1: Ch 1: 1.2, Ch2: 2.2 -2.7 Text 2: Ch 1: 1.1 -1.4, Ch 3: 3.1-3.3,3. Ref 3: Ch 1: 1.4	tions. Represent Operations: Trave rnomials and Spars ng algorithms. Prog	ation of Linear Arrarsing, inserting, deleting Matrices. Strings: Bagramming Examples.	ys in Memory, g, searching, and		
Stacks and Queues Stacks: Definition, Stack Operations, Arrays, Stack Applications: Polish no expression, Recursion - Factorial, Co function. Queues: Definition, Array Re queues using Dynamic arrays, Dequeue Queues. Programming Examples. Text 1: Ch3: 3.1 -3.7 Text 2: Ch6: 6.1 -6.3, 6.5, 6.7-6.10, 6.1	otation, Infix to p GCD, Fibonacci S epresentation, Que es, Priority Queues,	ostfix conversion, eval equence, Tower of Ha ue Operations, Circular	uation of postfix anoi, Ackerman's Queues, Circular	10 Hour	
Module – 3					
Linked Lists: Definition, Representati Collection. Linked list operations: Tra- lists, Circular linked lists, and header Linked lists – Polynomials, Sparse matr Text 1: Ch4: 4.1 -4.8 except 4.6 Text 2: Ch5: 5.1 – 5.10	versing, Searching. linked lists. Link	Insertion, and Deletion and Stacks and Queues	n. Doubly Linked	10 Hour	

Module-4

Trees: Terminology, Binary Trees, Properties of Binary trees, Array and linked Representation of Binary Trees, Binary Tree Traversals - Inorder, postorder, preorder; Additional Binary tree operations. Threaded binary trees, Binary Search Trees – Definition, Insertion, Deletion, Traversal, Searching, Application of Trees-Evaluation of Expression, Programming Examples

10 Hours

Text 1: Ch5: 5.1 –5.5, 5.7 Text 2: Ch7: 7.1 – 7.9

Module-5

Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation Of Graphs, Elementary Graph operations, Traversal methods: Breadth First Search and Depth First Search. **Sorting and Searching**: Insertion Sort, Radix sort, Address Calculation Sort. **Hashing:** Hash Table organizations, Hashing Functions, Static and Dynamic Hashing. **Files and Their Organization:** Data Hierarchy, File Attributes, Text Files and Binary Files, Basic File Operations, File Organizations and Indexing

10 Hours

Text 1: Ch6: 6.1 –6.2, Ch 7:7.2, Ch 8:8.1-8.3 Text 2: Ch8: 8.1 – 8.7, Ch 9:9.1-9.3,9.7,9.9

Reference 2: Ch 16: 16.1 - 16.7

Course outcomes: After studying this course, students will be able to:

- Explain different types of data structures, operations and algorithms
- Apply searching and sorting operations on files
- Make use of stack, Queue, Lists, Trees and Graphs in problem solving.
- Develop all data structures in a high-level language for problem solving.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Fundamentals of Data Structures in C Ellis Horowitz and Sartaj Sahni, 2nd edition, Universities Press 2014
- 2. Data Structures Seymour Lipschutz, Schaum's Outlines, Revised 1st edition, McGraw Hill, 2014

Reference Books:

- 1. Data Structures: A Pseudo-code approach with C –Gilberg & Forouzan, 2nd edition, Cengage Learning,2014
- 2. Data Structures using C, , Reema Thareja, 3rd edition Oxford press, 2012
- 3. An Introduction to Data Structures with Applications- Jean-Paul Tremblay & Paul G. Sorenson, 2nd Edition, McGraw Hill, 2013
- 4. Data Structures using C A M Tenenbaum, PHI, 1989
- 5. Data Structures and Program Design in C $\,$ Robert Kruse, 2^{nd} edition, PHI, 1996