En	JCINEEDING MA	THEMATICS III		
		ATHEMATICS-III It System (CBCS) schem	nel	
(Effective from the academic year 2017 -2018)				
SEMESTER – III Subject Code 17MAT31 IA Marks 40				
Subject Code			40	
Number of Lecture Hours/Week	04	Exam Marks	60	
Total Number of Lecture Hours	50	Exam Hours	03	
CREDITS – 04				
Module -1				Teaching Hours
Fourier Series: Periodic functions, Dirichlet's condition, Fourier Series of periodic functions with				10Hours
period 2π and with arbitrary period 2c. Fourier series of even and odd functions. Half range Fourier Series, practical harmonic analysis-Illustrative examples from engineering field.				
	strative examples fr	om engineering field.		
Module -2 Fourier Transforms: Infinite Fourier transforms, Fourier sine and cosine transforms. Inverse Fourier				10 Hours
transform.				10 Hours
Z-transform: Difference equations, basic definition, z-transform-definition, Standard z-transforms,				
Damping rule, Shifting rule, Initial value and final value theorems (without proof) and problems,				
Inverse z-transform. Applications of z-transforms to solve difference equations.				
Module – 3				
Statistical Methods: Review of measures of central tendency and dispersion. Correlation-Karl				10 Hours
Pearson's coefficient of correlation-problems. Regression analysis- lines of regression (without				
proof) –problems Curve Fitting: Curve fitting by the method of least squares- fitting of the curves of the form, y = ax				
+ b, $y = ax^2 + bx + c$ and $y = ae^{bx}$.				
Numerical Methods: Numerical solution of algebraic and transcendental equations by Regula- Falsi				
Method and Newton-Raphson method.				
Module-4				
Finite differences: Forward and backward differences, Newton's forward and backward				10 Hours
interpolation formulae. Divided differences- Newton's divided difference formula. Lagrange's				
interpolation formula and inverse interpolation formula (all formulae without proof)-Problems. Numerical integration: Simpson's (1/3) th and (3/8) th rules, Weddle's rule (without proof) –				
Problems.				
Module-5				T
Vector integration: Line integrals-definition and problems, surface and volume integrals-definition,				10 Hours
Green's theorem in a plane, Stokes and Gauss-divergence theorem(without proof) and problems. Calculus of Variations: Variation of function and Functional, variational problems. Euler's				
equation, Geodesics, hanging chain, pro		mai, variationai problems	. Luici s	
Course outcomes:				
Course outcomes.				

After Studying this course, students will be able to

- Know the use of periodic signals and Fourier series to analyze circuits and system communications.
- Explain the general linear system theory for continuous-time signals and digital signal processing using the Fourier Transform and z-transform.
- Employ appropriate numerical methods to solve algebraic and transcendental equations.
- Apply Green's Theorem, Divergence Theorem and Stokes' theorem in various applications in the field of electro-magnetic and gravitational fields and fluid flow problems.
- Determine the extremals of functionals and solve the simple problems of the calculus of variations.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. B. S. Grewal," Higher Engineering Mathematics", Khanna publishers, 42nd edition, 2013.
- 2. B.V. Ramana "Higher Engineering Mathematics" Tata McGraw-Hill, 2006.

Reference Books:

- 1. N. P. Bali and Manish Goyal, "A text book of Engineering mathematics", Laxmi publications, latest edition.
- 2. Kreyszig, "Advanced Engineering Mathematics" 9th edition, Wiley.
- 3. H. K Dass and Er. Rajnish Verma, "Higher Engineering Mathematics", S. Chand, 1st ed.